PREAMBLE: Private and Efficient Aggregation via Block Sparse Vectors
AuthorsHilal Asi, Vitaly Feldman, Hannah Keller†**, Guy N. Rothblum, Kunal Talwar
AuthorsHilal Asi, Vitaly Feldman, Hannah Keller†**, Guy N. Rothblum, Kunal Talwar
We revisit the problem of secure aggregation of high-dimensional vectors in a two-server system such as Prio. These systems are typically used to aggregate vectors such as gradients in private federated learning, where the aggregate itself is protected via noise addition to ensure differential privacy. Existing approaches require communication scaling with the dimensionality, and thus limit the dimensionality of vectors one can efficiently process in this setup.
We propose PREAMBLE: {\bf Pr}ivate {\bf E}fficient {\bf A}ggregation {\bf M}echanism via {\bf BL}ock-sparse {\bf E}uclidean Vectors. PREAMBLE builds on an extension of distributed point functions that enables communication- and computation-efficient aggregation of {\em block-sparse vectors}, which are sparse vectors where the non-zero entries occur in a small number of clusters of consecutive coordinates. We show that these block-sparse DPFs can be combined with random sampling and privacy amplification by sampling results, to allow asymptotically optimal privacy-utility trade-offs for vector aggregation, at a fraction of the communication cost. When coupled with recent advances in numerical privacy accounting, our approach incurs a negligible overhead in noise variance, compared to the Gaussian mechanism used with Prio.
July 17, 2024research area Methods and Algorithms, research area Privacyconference USENIX Security
July 21, 2023research area Computer Vision, research area Privacy
In this article, we share how we apply differential privacy (DP) to learn about the kinds of photos people take at frequently visited locations (iconic scenes) without personally identifiable data leaving their device. This approach is used in several features in Photos, including choosing key photos for Memories, and selecting key photos for locations in Places in iOS 17.