View publication

Secure aggregation of high-dimensional vectors is a fundamental primitive in federated statistics and learning. A two-server system such as PRIO allows for scalable aggregation of secret-shared vectors. Adversarial clients might try to manipulate the aggregate, so it is important to ensure that each (secret-shared) contribution is well-formed. In this work, we focus on the important and well-studied goal of ensuring that each contribution vector has bounded Euclidean norm. Existing protocols for ensuring bounded-norm contributions either incur a large communication overhead, or only allow for approximate verification of the norm bound. We propose Private Inexpensive Norm Enforcement (PINE): a new protocol that allows exact norm verification with little communication overhead. For high-dimensional vectors, our approach has a communication overhead of a few percent, compared to the 16-32x overhead of previous approaches.

Related readings and updates.

Learning Iconic Scenes with Differential Privacy

In this article, we share how we apply differential privacy (DP) to learn about the kinds of photos people take at frequently visited locations (iconic scenes) without personally identifiable data leaving their device. This approach is used in several features in Photos, including choosing key photos for Memories, and selecting key photos for locations in Places in iOS 17.

See highlight details

Differential Secrecy for Distributed Data and Applications to Robust Differentially Secure Vector Summation

Computing the noisy sum of real-valued vectors is an important primitive in differentially private learning and statistics. In private federated learning applications, these vectors are held by client devices, leading to a distributed summation problem. Standard Secure Multiparty Computation (SMC) protocols for this problem are susceptible to poisoning attacks, where a client may have a large influence on the sum, without being detected. In this…
See paper details