An important issue with Large Language Models (LLMs) is their undesired ability to generate toxic language. In this work, we show that the neurons responsible for toxicity can be determined by their power to discriminate toxic sentences, and that toxic language can be mitigated by reducing their activation levels proportionally to this power. We propose AUROC adaptation (AURA), an intervention that can be applied to any pre-trained LLM to mitigate toxicity. As the intervention is proportional to the ability of each neuron to discriminate toxic content, it is free of any model-dependent hyperparameters. We show that AURA can achieve up to 2.2× reduction in toxicity with only a 0.72 perplexity increase. We also show that AURA is effective with models of different scale (from 1.5B to 40B parameters), and its effectiveness in mitigating toxic language, while preserving common-sense zero-shot abilities, holds across all scales. AURA can be combined with pre-prompting strategies, boosting its average mitigation potential from 1.28× to 2.35×. Moreover, AURA can counteract adversarial pre-prompts that maliciously elicit toxic content, making it an effective method for deploying safer and less toxic models.

Related readings and updates.

Low-Resource Adaptation of Open-Domain Generative Chatbots

Recent work building open-domain chatbots has demonstrated that increasing model size improves performance. On the other hand, latency and connectivity considerations dictate the move of digital assistants on the device. Giving a digital assistant like Siri, Alexa, or Google Assistant the ability to discuss just about anything leads to the need for reducing the chatbot model size such that it fits on the user's device. We demonstrate that low…
See paper details

ICASSP 2020

Apple sponsored the 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP) in May 2020. With a focus on signal processing and its applications, the conference took place virtually from May 4 - 8. Read Apple’s accepted papers below.

See event details