View publication

Recent large language models (LLMs) advancements sparked a growing research interest in tool assisted LLMs solving real-world challenges, which calls for comprehensive evaluation of tool-use capabilities. While previous works focused on either evaluating over stateless web services (RESTful API), based on a single turn user prompt, or an off-policy dialog trajectory, ToolSandbox includes stateful tool execution, implicit state dependencies between tools, a built-in user simulator supporting on-policy conversational evaluation and a dynamic evaluation strategy for intermediate and final milestones over an arbitrary trajectory. We show that open source and proprietary models have a significant performance gap, and complex tasks like State Dependency, Canonicalization and Insufficient Information defined in ToolSandbox are challenging even the most capable SOTA LLMs, providing brand-new insights into tool-use LLM capabilities.

Related readings and updates.

Keyframer: Empowering Animation Design using Large Language Models

Large language models (LLMs) have the potential to impact a wide range of creative domains, as exemplified in popular text-to-image generators like DALL·E and Midjourney. However, the application of LLMs to motion-based visual design has not yet been explored and presents novel challenges such as how users might effectively describe motion in natural language. Further, many existing generative design tools lack support for iterative refinement of…
See paper details

mage: Fluid Moves Between Code and Graphical Work in Computational Notebooks

We aim to increase the flexibility at which a data worker can choose the right tool for the job, regardless of whether the tool is a code library or an interactive graphical user interface (GUI). To achieve this flexibility, we extend computational notebooks with a new API mage, which supports tools that can represent themselves as both code and GUI as needed. We discuss the design of mage as well as design opportunities in the space of flexible…
See paper details