View publication

We aim to increase the flexibility at which a data worker can choose the right tool for the job, regardless of whether the tool is a code library or an interactive graphical user interface (GUI). To achieve this flexibility, we extend computational notebooks with a new API mage, which supports tools that can represent themselves as both code and GUI as needed. We discuss the design of mage as well as design opportunities in the space of flexible code/GUI tools for data work. To understand tooling needs, we conduct a study with nine professional practitioners and elicit their feedback on mage and potential areas for flexible code/GUI tooling. We then implement six client tools for mage that illustrate the main themes of our study findings. Finally, we discuss open challenges in providing flexible code/GUI interactions for data workers.

Related readings and updates.

Keyframer: Empowering Animation Design using Large Language Models

Large language models (LLMs) have the potential to impact a wide range of creative domains, as exemplified in popular text-to-image generators like DALL·E and Midjourney. However, the application of LLMs to motion-based visual design has not yet been explored and presents novel challenges such as how users might effectively describe motion in natural language. Further, many existing generative design tools lack support for iterative refinement of…
See paper details

CVNets: High Performance Library for Computer Vision

We introduce CVNets, a high-performance open-source library for training deep neural networks for visual recognition tasks, including classification, detection, and segmentation. CVNets supports image and video understanding tools, including data loading, data transformations, novel data sampling methods, and implementations of several standard networks with similar or better performance than previous studies.
See paper details