View publication

*= Equal Contributions

Recovering linear subspaces from data is a fundamental and important task in statistics and machine learning. Motivated by heterogeneity in Federated Learning settings, we study a basic formulation of this problem: the principal component analysis (PCA), with a focus on dealing with irregular noise. Our data come from nn users with user ii contributing data samples from a dd-dimensional distribution with mean μi\mu_i. Our goal is to recover the linear subspace shared by μ1,,μn\mu_1,\ldots,\mu_n using the data points from all users, where every data point from user ii is formed by adding an independent mean-zero noise vector to μi\mu_i. If we only have one data point from every user, subspace recovery is information-theoretically impossible when the covariance matrices of the noise vectors can be non-spherical, necessitating additional restrictive assumptions in previous work. We avoid these assumptions by leveraging at least two data points from each user, which allows us to design an efficiently-computable estimator under non-spherical and user-dependent noise. We prove an upper bound for the estimation error of our estimator in general scenarios where the number of data points and amount of noise can vary across users, and prove an information-theoretic error lower bound that not only matches the upper bound up to a constant factor, but also holds even for spherical Gaussian noise. This implies that our estimator does not introduce additional estimation error (up to a constant factor) due to irregularity in the noise. We show additional results for a linear regression problem in a similar setup.

Related readings and updates.

Private and Personalized Frequency Estimation in a Federated Setting

Motivated by the problem of next word prediction on user devices we introduce and study the problem of personalized frequency histogram estimation in a federated setting. In this problem, over some domain, each user observes a number of samples from a distribution which is specific to that user. The goal is to compute for all users a personalized estimate of the user's distribution with error measured in KL divergence. We focus on addressing two…
See paper details

Mean Estimation with User-level Privacy under Data Heterogeneity

A key challenge in many modern data analysis tasks is that user data is heterogeneous. Different users may possess vastly different numbers of data points. More importantly, it cannot be assumed that all users sample from the same underlying distribution. This is true, for example in language data, where different speech styles result in data heterogeneity. In this work we propose a simple model of heterogeneous user data that differs in both…
See paper details