View publication

A key challenge in many modern data analysis tasks is that user data is heterogeneous. Different users may possess vastly different numbers of data points. More importantly, it cannot be assumed that all users sample from the same underlying distribution. This is true, for example in language data, where different speech styles result in data heterogeneity. In this work we propose a simple model of heterogeneous user data that differs in both distribution and quantity of data, and we provide a method for estimating the population-level mean while preserving user-level differential privacy. We demonstrate asymptotic optimality of our estimator and also prove general lower bounds on the error achievable in our problem. In particular, while the optimal non-private estimator can be shown to be linear, we show that privacy constrains us to use a non-linear estimator.

*=Equal Contributors

Related readings and updates.

Subspace Recovery from Heterogeneous Data with Non-isotropic Noise

*= Equal Contributions Recovering linear subspaces from data is a fundamental and important task in statistics and machine learning. Motivated by heterogeneity in Federated Learning settings, we study a basic formulation of this problem: the principal component analysis (PCA), with a focus on dealing with irregular noise. Our data come from nnn users with user iii contributing data samples from a ddd-dimensional distribution with mean…
See paper details

Lower Bounds for Locally Private Estimation via Communication Complexity

We develop lower bounds for estimation under local privacy constraints—including differential privacy and its relaxations to approximate or Rényi differential privacy—by showing an equivalence between private estimation and communication-restricted estimation problems. Our results apply to arbitrarily interactive privacy mechanisms, and they also give sharp lower bounds for all levels of differential privacy protections, that is, privacy…
See paper details