View publication

Accurate measurement of daily infection incidence is crucial to epidemic response. However, delays in symptom onset, testing, and reporting obscure the dynamics of transmission, necessitating methods to remove the effects of stochastic delays from observed data. Existing estimators can be sensitive to model misspecification and censored observations; many analysts have instead used methods that exhibit strong bias. We develop an estimator with a regularization scheme to cope with stochastic delays, which we term the robust incidence deconvolution estimator. We compare the method to existing estimators in a simulation study, measuring accuracy in a variety of experimental conditions. We then use the method to study COVID-19 records in the United States, highlighting its stability in the face of misspecification and right censoring. To implement the robust incidence deconvolution estimator, we release incidental, a ready-to-use R implementation of our estimator that can aid ongoing efforts to monitor the COVID-19 pandemic.

Related readings and updates.

Modeling the Impact of User Mobility on COVID-19 Infection Rates Over Time

As the COVID-19 pandemic took off during early 2020, widespread interest in modeling the trajectory of infections emerged. This interest was predicated on the hope that accurate models could be developed and subsequently used to help governments and policy makers monitor the effect of lockdowns and determine safe points in time to reopen.

See highlight details

Smooth Sequential Optimization with Delayed Feedback

This paper was accepted at the workshop on Bayesian Causal Inference for Real World Interactive Systems at the KDD 2021 conference. Stochastic delays in feedback lead to unstable sequential learning using multi-armed bandits. Recently, empirical Bayesian shrinkage has been shown to improve reward estimation in bandit learning. Here, we propose a novel adaptation to shrinkage that estimates smoothed reward estimates from windowed cumulative…
See paper details