View publication

In this work, we connect two distinct concepts for unsupervised domain adaptation: feature distribution alignment between domains by utilizing the task-specific decision boundary and the Wasserstein metric. Our proposed sliced Wasserstein discrepancy (SWD) is designed to capture the natural notion of dissimilarity between the outputs of task-specific classifiers. It provides a geometrically meaningful guidance to detect target samples that are far from the support of the source and enables efficient distribution alignment in an end-to-end trainable fashion. In the experiments, we validate the effectiveness and genericness of our method on digit and sign recognition, image classification, semantic segmentation, and object detection.

Related readings and updates.

Corpus Synthesis for Zero-shot ASR Domain Adaptation using Large Language Models

While Automatic Speech Recognition (ASR) systems are widely used in many real-world applications, they often do not generalize well to new domains and need to be finetuned on data from these domains. However, target-domain data is usually not readily available in many scenarios. In this paper, we propose a new strategy for adapting ASR models to new target domains without any text or speech from those domains. To accomplish this, we propose a…
See paper details

Bridging the Domain Gap for Neural Models

Deep neural networks are a milestone technique in the advancement of modern machine perception systems. However, in spite of the exceptional learning capacity and improved generalizability, these neural models still suffer from poor transferability. This is the challenge of domain shift—a shift in the relationship between data collected across different domains (e.g., computer generated vs. captured by real cameras). Models trained on data collected in one domain generally have poor accuracy on other domains. In this article, we discuss a new domain adaptation process that takes advantage of task-specific decision boundaries and the Wasserstein metric to bridge the domain gap, allowing the effective transfer of knowledge from one domain to another. As an additional advantage, this process is completely unsupervised, i.e., there is no need for new domain data to have labels or annotations.

See highlight details