View publication

Deep neural networks require collecting and annotating large amounts of data to train successfully. In order to alleviate the annotation bottleneck, we propose a novel self-supervised representation learning approach for spatiotemporal features extracted from videos. We introduce Skip-Clip, a method that utilizes temporal coherence in videos, by training a deep model for future clip order ranking conditioned on a context clip as a surrogate objective for video future prediction. We show that features learned using our method are generalizable and transfer strongly to downstream tasks. For action recognition on the UCF101 dataset, we obtain 51.8% improvement over random initialization and outperform models initialized using inflated ImageNet parameters. Skip-Clip also achieves results competitive with state-of-the-art self-supervision methods.

Related readings and updates.

Sep-28k: A Dataset for Stuttering Event Detection from Podcasts with People Who Stutter

The ability to automatically detect stuttering events in speech could help speech pathologists track an individual’s fluency over time or help improve speech recognition systems for people with atypical speech patterns. Despite increasing interest in this area, existing public datasets are too small to build generalizable dysfluency detection systems and lack sufficient annotations. In this work, we introduce Stuttering Events in Podcasts…
See paper details

Multiple Futures Prediction

Temporal prediction is critical for making intelligent and robust decisions in complex dynamic environments. Motion prediction needs to model the inherently uncertain future which often contains multiple potential outcomes, due to multi-agent interactions and the latent goals of others. Towards these goals, we introduce a probabilistic framework that efficiently learns latent variables to jointly model the multi-step future motions of agents in a…
See paper details