View publication

Deep neural networks require collecting and annotating large amounts of data to train successfully. In order to alleviate the annotation bottleneck, we propose a novel self-supervised representation learning approach for spatiotemporal features extracted from videos. We introduce Skip-Clip, a method that utilizes temporal coherence in videos, by training a deep model for future clip order ranking conditioned on a context clip as a surrogate objective for video future prediction. We show that features learned using our method are generalizable and transfer strongly to downstream tasks. For action recognition on the UCF101 dataset, we obtain 51.8% improvement over random initialization and outperform models initialized using inflated ImageNet parameters. Skip-Clip also achieves results competitive with state-of-the-art self-supervision methods.

Related readings and updates.

Multiple Futures Prediction

Temporal prediction is critical for making intelligent and robust decisions in complex dynamic environments. Motion prediction needs to model the inherently uncertain future which often contains multiple potential outcomes, due to multi-agent interactions and the latent goals of others. Towards these goals, we introduce a probabilistic framework that efficiently learns latent variables to jointly model the multi-step future motions of agents in a…
See paper details

Apple at NeurIPS 2019

Apple attended the 33rd Conference and Workshop on Neural Information Processing Systems (NeurIPS) in December. The conference took place in Vancouver, Canada from December 8th to 14th.

Apple product teams are engaged in state of the art research in machine hearing, speech recognition, natural language processing, machine translation, text-to-speech, and artificial intelligence, improving the lives of millions of customers every day.

See event details