View publication

Deep neural networks require collecting and annotating large amounts of data to train successfully. In order to alleviate the annotation bottleneck, we propose a novel self-supervised representation learning approach for spatiotemporal features extracted from videos. We introduce Skip-Clip, a method that utilizes temporal coherence in videos, by training a deep model for future clip order ranking conditioned on a context clip as a surrogate objective for video future prediction. We show that features learned using our method are generalizable and transfer strongly to downstream tasks. For action recognition on the UCF101 dataset, we obtain 51.8% improvement over random initialization and outperform models initialized using inflated ImageNet parameters. Skip-Clip also achieves results competitive with state-of-the-art self-supervision methods.

Related readings and updates.

Self-supervised Semi-supervised Learning for Data Labeling and Quality Evaluation

This paper was accepted at the Data-Centric AI Workshop at the NeurIPS 2021 conference. As the adoption of deep learning techniques in industrial applications grows with increasing speed and scale, successful deployment of deep learning models often hinges on the availability, volume, and quality of annotated data. In this paper, we tackle the problems of efficient data labeling and annotation verification under the human-in-the-loop setting. We…
See paper details

Do Self-Supervised and Supervised Methods Learn Similar Visual Representations?

*=Equal Contribution Despite the success of a number of recent techniques for visual self-supervised deep learning, there remains limited investigation into the representations that are ultimately learned. By using recent advances in comparing neural representations, we explore in this direction by comparing a constrastive self-supervised algorithm (SimCLR) to supervision for simple image data in a common architecture. We find that the methods…
See paper details