View publication

This paper was accepted at the UniReps Workshop at NeurIPS 2023.

The landscape of publicly available vision foundation models (VFMs), such as CLIP and Segment Anything Model (SAM), is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their pre-training objectives. For instance, CLIP excels in semantic understanding, while SAM specializes in spatial understanding for segmentation. In this work, we introduce a simple recipe to efficiently merge VFMs into a unified model that absorbs their expertise. Our method integrates techniques of multi-task learning, continual learning, and distillation. Further, it demands significantly less computational cost compared to traditional multi-task training from scratch, and it only needs a small fraction of the pre-training datasets that were initially used to train individual models. By applying our method to SAM and CLIP, we obtain SAM-CLIP: a unified model that combines the capabilities of SAM and CLIP into a single vision transformer. Compared with deploying SAM and CLIP independently, our merged model, SAM-CLIP, reduces storage and compute costs for inference, making it well-suited for edge device applications. We show that SAM-CLIP not only retains the foundational strengths of SAM and CLIP, but also introduces synergistic functionalities, notably in zero-shot semantic segmentation, where SAM-CLIP establishes new state-of-the-art results on five benchmarks. It outperforms previous models that are specifically designed for this task by a large margin, including +6.8% and +5.9% mean IoU improvement on Pascal-VOC and COCO-Stuff datasets, respectively.

Related readings and updates.

Merge Vision Foundation Models via Multi-Task Distillation

As the repository of publicly available pre-trained vision foundation models (VFMs) — such as CLIP, DINOv2, and SAM — grows, users face challenges in storage, memory, and computational efficiency when deploying multiple models concurrently. To address these concerns, we introduce a unique approach that merges the capabilities of multiple VFMs into a single efficient multi-task model. Our method, termed "joint distillation," seamlessly integrates…
See paper details

Skip-Clip: Self-Supervised Spatiotemporal Representation Learning by Future Clip Order Ranking

Deep neural networks require collecting and annotating large amounts of data to train successfully. In order to alleviate the annotation bottleneck, we propose a novel self-supervised representation learning approach for spatiotemporal features extracted from videos. We introduce Skip-Clip, a method that utilizes temporal coherence in videos, by training a deep model for future clip order ranking conditioned on a context clip as a surrogate…
See paper details