Recurrent Drafter for Fast Speculative Decoding in Large Language Models
AuthorsAonan Zhang, Ray Zhang, Yunfei Cheng, Chong Wang, Yi Wang
AuthorsAonan Zhang, Ray Zhang, Yunfei Cheng, Chong Wang, Yi Wang
We present Recurrent Drafter (ReDrafter), an advanced speculative decoding approach that achieves state-of-the-art speedup for large language models (LLMs) inference. The performance gains are driven by three key aspects: (1) leveraging a recurrent neural network (RNN) as the draft model conditioning on LLM's hidden states, (2) applying a dynamic tree attention algorithm over beam search results to eliminate duplicated prefixes in candidate sequences, and (3) training through knowledge distillation from the LLM. ReDrafter accelerates Vicuna inference in MT-Bench by up to 2.8x with a PyTorch implementation on Nvidia H100 GPUs. To demonstrate its practicality in real environments, we also validated its effectiveness for on-device applications by implementing the approach in MLX and benchmarking performance on Metal GPUs in Apple Silicon chips, achieving up to 2.3x speedup.