View publication

This paper was accepted at the Efficient Natural Language and Speech Processing (ENLSP) Workshop at NeurIPS 2024.

Speculative decoding is a prominent technique to speed up the inference of a large target language model based on predictions of an auxiliary draft model. While effective, in application-specific settings, it often involves fine-tuning both draft and target models to achieve high acceptance rates. As the number of downstream tasks grows, these draft models add significant complexity to inference systems. We propose Speculative Streaming, a single-model speculative decoding method that fuses drafting into the target model by changing the fine-tuning objective from next token prediction to future n-gram prediction. Speculative Streaming speeds up decoding by 1.8 - 3.1X in a diverse set of tasks, such as Summarization, Structured Queries, and Meaning Representation, without sacrificing generation quality. Additionally, Speculative Streaming is parameter-efficient. It achieves on-par/higher speed-ups than Medusa-style architectures while using ~10000X fewer extra parameters, making it well-suited for resource-constrained devices.

Related readings and updates.

Streaming Anchor Loss: Augmenting Supervision with Temporal Significance

Streaming neural network models for fast frame-wise responses to various speech and sensory signals are widely adopted on resource-constrained platforms. Hence, increasing the learning capacity of such streaming models (i.e., by adding more parameters) to improve the predictive power may not be viable for real-world tasks. In this work, we propose a new loss, Streaming Anchor Loss (SAL), to better utilize the given learning capacity by…
See paper details

Streaming On-Device Detection of Device Directed Speech from Voice and Touch-Based Invocation

When interacting with smart devices such as mobile phones or wearables, the user typically invokes a virtual assistant (VA) by saying a keyword or by pressing a button on the device. However, in many cases, the VA can accidentally be invoked by the keyword-like speech or accidental button press, which may have implications on user experience and privacy. To this end, we propose an acoustic false-trigger-mitigation (FTM) approach for on-device…
See paper details