This paper was accepted at the 5th AAAI Workshop on Privacy-Preserving Artificial Intelligence.

Personalized recommendations form an important part of today's internet ecosystem, helping artists and creators to reach interested users, and helping users to discover new and engaging content. However, many users today are skeptical of platforms that personalize recommendations, in part due to historically careless treatment of personal data and data privacy. Now, businesses that rely on personalized recommendations are entering a new paradigm, where many of their systems must be overhauled to be privacy-first. In this article, we propose an algorithm for personalized recommendations that facilitates both precise and differentially-private measurement. We consider advertising as an example application, and conduct offline experiments to quantify how the proposed privacy-preserving algorithm affects key metrics related to user experience, advertiser value, and platform revenue compared to the extremes of both (private) non-personalized and non-private, personalized implementations.

Related readings and updates.

Private and Personalized Frequency Estimation in a Federated Setting

Motivated by the problem of next word prediction on user devices we introduce and study the problem of personalized frequency histogram estimation in a federated setting. In this problem, over some domain, each user observes a number of samples from a distribution which is specific to that user. The goal is to compute for all users a personalized estimate of the user's distribution with error measured in KL divergence. We focus on addressing two…
See paper details

Apple Privacy-Preserving Machine Learning Workshop 2022

Earlier this year, Apple hosted the Privacy-Preserving Machine Learning (PPML) workshop. This virtual event brought Apple and members of the academic research communities together to discuss the state of the art in the field of privacy-preserving machine learning through a series of talks and discussions over two days.

See event details