View publication

Efficient large-scale inference of transformer-based large language models (LLMs) remains a fundamental systems challenge, frequently requiring multi-GPU parallelism to meet stringent latency and throughput targets. Conventional tensor parallelism decomposes matrix operations across devices but introduces substantial inter-GPU synchronization, leading to communication bottlenecks and degraded scalability. We propose the Parallel Track (PT) Transformer, a novel architectural paradigm that restructures computation to minimize cross-device dependencies. PT achieves up to a 16x reduction in synchronization operations relative to standard tensor parallelism, while maintaining competitive model quality in our experiments. We integrate PT into two widely adopted LLM serving stacks-Tensor-RT-LLM and vLLM-and report consistent improvements in serving efficiency, including up to 15-30% reduced time to first token, 2-12% reduced time per output token, and up to 31.90% increased throughput in both settings.

Related readings and updates.

With the rapid expansion in the scale of large language models (LLMs), enabling efficient distributed inference across multiple computing units has become increasingly critical. However, communication overheads from popular distributed inference techniques such as Tensor Parallelism pose a significant challenge to achieve scalability and low latency. Therefore, we introduce a novel optimization technique, Sync-Point Drop (SPD), to reduce…

Read more

This paper was accepted at the Efficient Natural Language and Speech Processing (ENLSP) Workshop at NeurIPS 2024.

Tensor parallelism provides an effective way to increase server large language model (LLM) inference efficiency despite adding an additional communication cost. However, as server LLMs continue to scale in size, they will need to be distributed across more devices, magnifying the communication cost. One way to approach this problem…

Read more