View publication

Keyword spotting (KWS) is an important technique for speech applications, which enables users to activate devices by speaking a keyword phrase. Although a phoneme classifier can be used for KWS, exploiting a large amount of transcribed data for automatic speech recognition (ASR), there is a mismatch between the training criterion (phoneme recognition) and the target task (KWS). Recently, multi-task learning has been applied to KWS to exploit both ASR and KWS training data. In this approach, an output of an acoustic model is split into two branches for the two tasks, one for phoneme transcription trained with the ASR data and one for keyword classification trained with the KWS data. In this paper, we introduce a cross attention decoder in the multi-task learning framework. Unlike the conventional multi-task learning approach with the simple split of the output layer, the cross attention decoder summarizes information from a phonetic encoder by performing cross attention between the encoder outputs and a trainable query sequence to predict a confidence score for the KWS task. Experimental results on KWS tasks show that the proposed approach achieves a 12% relative reduction in the false reject ratios compared to the conventional multi-task learning with split branches and a bi-directional long short-team memory decoder.

Related readings and updates.

Matching Latent Encoding for Audio-Text based Keyword Spotting

Using audio and text embeddings jointly for Keyword Spotting (KWS) has shown high-quality results, but the key challenge of how to semantically align two embeddings for multi-word keywords of different sequence lengths remains largely unsolved. In this paper, we propose an audio-text-based end-to-end model architecture for flexible keyword spotting (KWS), which builds upon learned audio and text embeddings. Our architecture uses a novel…
See paper details

Learning to Branch for Multi-Task Learning

Training multiple tasks jointly in one deep network yields reduced latency during inference and better performance over the single-task counterpart by sharing certain layers of a network. However, over-sharing a network could erroneously enforce over-generalization, causing negative knowledge transfer across tasks. Prior works rely on human intuition or pre-computed task relatedness scores for ad hoc branching structures. They provide suboptimal…
See paper details