View publication

Training multiple tasks jointly in one deep network yields reduced latency during inference and better performance over the single-task counterpart by sharing certain layers of a network. However, over-sharing a network could erroneously enforce over-generalization, causing negative knowledge transfer across tasks. Prior works rely on human intuition or pre-computed task relatedness scores for ad hoc branching structures. They provide suboptimal end results and often require huge efforts for the trial-and-error process.

In this work, we present an automated multi-task learning algorithm that learns where to share or branch within a network, designing an effective network topology that is directly optimized for multiple objectives across tasks. Specifically, we propose a novel tree-structured design space that casts a tree branching operation as a gumbel softmax sampling procedure. This enables differentiable network splitting that is end-to-end trainable. We validate the proposed method on controlled synthetic data, CelebA, and Taskonomy.

Related readings and updates.

ICML 2020

Apple sponsored the thirty-seventh International Conference on Machine Learning (ICML), which was held virtually from July 12 to 18. ICML is a leading global gathering dedicated to advancing the machine learning field.

See event details

Multi-Task Learning for Speaker Verification and Voice Trigger Detection

Automatic speech transcription and speaker recognition are usually treated as separate tasks even though they are interdependent. In this study, we investigate training a single network to perform both tasks jointly. We train the network in a supervised multi-task learning setup, where the speech transcription branch of the network is trained to minimise a phonetic connectionist temporal classification (CTC) loss while the speaker recognition…
See paper details