View publication

We develop lower bounds for estimation under local privacy constraints—including differential privacy and its relaxations to approximate or Rényi differential privacy—by showing an equivalence between private estimation and communication-restricted estimation problems. Our results apply to arbitrarily interactive privacy mechanisms, and they also give sharp lower bounds for all levels of differential privacy protections, that is, privacy mechanisms with privacy levels . As a particular consequence of our results, we show that the minimax mean-squared error for estimating the mean of a bounded or Gaussian random vector in dimensions scales as

Related readings and updates.

A Survey on Privacy from Statistical, Information and Estimation-Theoretic Views

The privacy risk has become an emerging challenge in both information theory and computer science due to the massive (centralized) collection of user data. In this paper, we overview privacy-preserving mechanisms and metrics from the lenses of information theory, and unify different privacy metrics, including f-divergences, Renyi divergences, and differential privacy, by the probability likelihood ratio (and the logarithm of it). We introduce…
See paper details

Individual Privacy Accounting via a Renyi Filter

We consider a sequential setting in which a single dataset of individuals is used to perform adaptively-chosen analyses, while ensuring that the differential privacy loss of each participant does not exceed a pre-specified privacy budget. The standard approach to this problem relies on bounding a worst-case estimate of the privacy loss over all individuals and all possible values of their data, for every single analysis. Yet, in many scenarios…
See paper details