View publication

We present a novel method for generating, predicting, and using Spatiotemporal Occupancy Grid Maps (SOGM), which embed future information of dynamic scenes. Our automated generation process creates groundtruth SOGMs from previous navigation data. We build on prior work to annotate lidar points based on their dynamic properties, which are then projected on time-stamped 2D grids: SOGMs. We design a 3D-2D feedforward architecture, trained to predict the future time steps of SOGMs, given 3D lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for robots. The network is composed of a 3D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2D front-end that predicts the future information embedded in the SOGMs within planning. We also design a navigation pipeline that uses these predicted SOGMs. We provide both quantitative and qualitative insights into the predictions and validate our choices of network design with a comparison to the state of the art and ablation studies.

Related readings and updates.

Self-Supervised Learning of Lidar Segmentation for Autonomous Indoor Navigation

We present a self-supervised learning approach for the semantic segmentation of lidar frames. Our method is used to train a deep point cloud segmentation architecture without any human annotation. The annotation process is automated with the combination of simultaneous localization and mapping (SLAM) and ray-tracing algorithms. By performing multiple navigation sessions in the same environment, we are able to identify permanent structures, such…
See paper details

RetrievalFuse: Neural 3D Scene Reconstruction with a Database

3D reconstruction of large scenes is a challenging problem due to the high-complexity nature of the solution space, in particular for generative neural networks. In contrast to traditional generative learned models which encode the full generative process into a neural network and can struggle with maintaining local details at the scene level, we introduce a new method that directly leverages scene geometry from the training database. First, we…
See paper details