View publication

We develop a new model of insulin-glucose dynamics for forecasting blood glucose in type 1 diabetics. We augment an existing biomedical model by introducing time-varying dynamics driven by a machine learning sequence model. Our model maintains a physiologically plausible inductive bias and clinically interpretable parameters — e.g., insulin sensitivity — while inheriting the flexibility of modern pattern recognition algorithms. Critical to modeling success are the flexible, but structured representations of subject variability with a sequence model. In contrast, less constrained models like the LSTM fail to provide reliable or physiologically plausible forecasts. We conduct an extensive empirical study. We show that allowing biomedical model dynamics to vary in time improves forecasting at long time horizons, up to six hours, and produces forecasts consistent with the physiological effects of insulin and carbohydrates.

Related readings and updates.

Personalizing Health and Fitness with Hybrid Modeling

Recent research has explored clinical monitoring, cardiovascular events, and even clinical lab values from wearables data. As adoption increases, wearables data may become crucial in public health applications like disease monitoring and the design of epidemiological studies.

See highlight details

Latent Temporal Flows for Multivariate Analysis of Wearables Data

Increased use of sensor signals from wearable devices as rich sources of physiological data has sparked growing interest in developing health monitoring systems to identify changes in an individual’s health profile. Indeed, machine learning models for sensor signals have enabled a diverse range of healthcare related applications including early detection of abnormalities, fertility tracking, and adverse drug effect prediction. However, these…
See paper details