View publication

We develop a new model of insulin-glucose dynamics for forecasting blood glucose in type 1 diabetics. We augment an existing biomedical model by introducing time-varying dynamics driven by a machine learning sequence model. Our model maintains a physiologically plausible inductive bias and clinically interpretable parameters — e.g., insulin sensitivity — while inheriting the flexibility of modern pattern recognition algorithms. Critical to modeling success are the flexible, but structured representations of subject variability with a sequence model. In contrast, less constrained models like the LSTM fail to provide reliable or physiologically plausible forecasts. We conduct an extensive empirical study. We show that allowing biomedical model dynamics to vary in time improves forecasting at long time horizons, up to six hours, and produces forecasts consistent with the physiological effects of insulin and carbohydrates.

Related readings and updates.

Modeling the Impact of User Mobility on COVID-19 Infection Rates Over Time

As the COVID-19 pandemic took off during early 2020, widespread interest in modeling the trajectory of infections emerged. This interest was predicated on the hope that accurate models could be developed and subsequently used to help governments and policy makers monitor the effect of lockdowns and determine safe points in time to reopen.

See article details

Breiman's Two Cultures: You Don't Have to Choose Sides

Breiman's classic paper casts data analysis as a choice between two cultures: data modelers and algorithmic modelers. Stated broadly, data modelers use simple, interpretable models with well-understood theoretical properties to analyze data. Algorithmic modelers prioritize predictive accuracy and use more flexible function approximations to analyze data. This dichotomy overlooks a third set of models—mechanistic models derived from scientific…
See paper details