View publication

Increased use of sensor signals from wearable devices as rich sources of physiological data has sparked growing interest in developing health monitoring systems to identify changes in an individual’s health profile. Indeed, machine learning models for sensor signals have enabled a diverse range of healthcare related applications including early detection of abnormalities, fertility tracking, and adverse drug effect prediction. However, these models can fail to account for the dependent high-dimensional nature of the underlying sensor signals. In this paper, we introduce Latent Temporal Flows, a method for multivariate time-series modeling tailored to this setting. We assume that a set of sequences is generated from a multivariate probabilistic model of an unobserved time-varying low-dimensional latent vector. Latent Temporal Flows simultaneously recovers a transformation of the observed sequences into lower-dimensional latent representations via deep autoencoder mappings, and estimates a temporally-conditioned probabilistic model via normalizing flows. Using data from the Apple Heart and Movement Study (AH&MS), we illustrate promising forecasting performance on these challenging signals. Additionally, by analyzing two and three dimensional representations learned by our model, we show that we can identify participants’ VO2max, a main indicator and summary of cardio-respiratory fitness, using only lower-level signals. Finally, we show that the proposed method consistently outperforms the state-of-the-art in multi-step forecasting benchmarks (achieving at least a 10% performance improvement) on several real-world datasets, while enjoying increased computational efficiency.

Related readings and updates.

Enhancing Paragraph Generation with a Latent Language Diffusion Model

In the fast-evolving world of natural language processing (NLP), there is a strong demand for generating coherent and controlled text, as referenced in the work Toward Controlled Generation of Text. Traditional autoregressive models such as GPT, which have long been the industry standard, possess inherent limitations that sometimes manifest as repetitive and low-quality outputs, as seen in the work The Curious Case of Neural Text Degeneration. This is primarily due to a phenomenon known as "exposure bias," as seen in the work Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. This imperfection arises due to a mismatch between how these models are trained and their actual use during inference, often leading to error accumulation during text generation.

See highlight details

Variational Neural Machine Translation with Normalizing Flows

Variational Neural Machine Translation (VNMT) is an attractive framework for modeling the generation of target translations, conditioned not only on the source sentence but also on some latent random variables. The latent variable modeling may introduce useful statistical dependencies that can improve translation accuracy. Unfortunately, learning informative latent variables is non-trivial, as the latent space can be prohibitively large, and the…
See paper details