View publication

*=Equal Contribution

In this work we examine how fine-tuning impacts the fairness of contrastive Self-Supervised Learning (SSL) models. Our findings indicate that Batch Normalization (BN) statistics play a crucial role, and that updating only the BN statistics of a pre-trained SSL backbone improves its downstream fairness (36% worst subgroup, 25% mean subgroup gap). This procedure is competitive with supervised learning, while taking 4.4x less time to train and requiring only 0.35% as many parameters to be updated. Finally, inspired by recent work in supervised learning, we find that updating BN statistics and training residual skip connections (12.3% of the parameters) achieves parity with a fully fine-tuned model, while taking 1.33x less time to train.

Related readings and updates.

Homomorphic Self-Supervised Learning

This paper was accepted at the workshop "Self-Supervised Learning - Theory and Practice" at NeurIPS 2022. Many state of the art self-supervised learning approaches fundamentally rely on transformations applied to the input in order to selectively extract task-relevant information. Recently, the field of equivariant deep learning has developed to introduce structure into the feature space of deep neural networks, specifically with respect to such…
See paper details

Elastic Weight Consolidation Improves the Robustness of Self-Supervised Learning Methods under Transfer

This paper was accepted at the workshop "Self-Supervised Learning - Theory and Practice" at NeurIPS 2022. Self-supervised representation learning (SSL) methods provide an effective label-free initial condition for fine-tuning downstream tasks. However, in numerous realistic scenarios, the downstream task might be biased with respect to the target label distribution. This in turn moves the learned fine-tuned model posterior away from the initial…
See paper details