View publication

This paper was accepted at the workshop "Self-Supervised Learning - Theory and Practice" at NeurIPS 2022.

Self-supervised representation learning (SSL) methods provide an effective label-free initial condition for fine-tuning downstream tasks. However, in numerous realistic scenarios, the downstream task might be biased with respect to the target label distribution. This in turn moves the learned fine-tuned model posterior away from the initial (label) bias-free self-supervised model posterior. In this work, we re-interpret SSL fine-tuning under the lens of Bayesian continual learning and consider regularization through the Elastic Weight Consolidation (EWC) framework. We demonstrate that self-regularization against an initial SSL backbone improves worst sub-group performance in Waterbirds by 5% and Celeb-A by 2% when using the ViT-B/16 architecture. Furthermore, to help simplify the use of EWC with SSL, we pre-compute and publicly release the Fisher Information Matrix (FIM), evaluated with 10,000 ImageNet-1K variates evaluated on large modern SSL architectures including ViT-B/16 and ResNet50 trained with DINO.

Related readings and updates.

Homomorphic Self-Supervised Learning

This paper was accepted at the workshop "Self-Supervised Learning - Theory and Practice" at NeurIPS 2022. Many state of the art self-supervised learning approaches fundamentally rely on transformations applied to the input in order to selectively extract task-relevant information. Recently, the field of equivariant deep learning has developed to introduce structure into the feature space of deep neural networks, specifically with respect to such…
See paper details

Evaluating the Fairness of Fine-Tuning Strategies in Self-Supervised Learning

*=Equal Contribution In this work we examine how fine-tuning impacts the fairness of contrastive Self-Supervised Learning (SSL) models. Our findings indicate that Batch Normalization (BN) statistics play a crucial role, and that updating only the BN statistics of a pre-trained SSL backbone improves its downstream fairness (36% worst subgroup, 25% mean subgroup gap). This procedure is competitive with supervised learning, while taking 4.4x less…
See paper details