View publication

Differential Privacy (DP) provides strong guarantees on the risk of compromising a users data in statistical learning applications, though these strong protections make learning challenging and may be too stringent for some use cases. To address this, we propose element level differential privacy, which extends differential privacy to provide protection against leaking information about any particular “element” a user has, allowing better utility and more robust results than classical DP. By carefully choosing these “elements,” it is possible to provide privacy protections at a desired granularity. We provide definitions, associated privacy guarantees, and analysis to identify the tradeoffs with the new definition; we also develop several private estimation and learning methodologies, providing careful examples for item frequency and M-estimation (empirical risk minimization) with concomitant privacy and utility analysis. We complement our theoretical and methodological advances with several real-world applications, estimating histograms and fitting several large-scale prediction models, including deep networks.

Related readings and updates.

Apple Privacy-Preserving Machine Learning Workshop 2022

Earlier this year, Apple hosted the Privacy-Preserving Machine Learning (PPML) workshop. This virtual event brought Apple and members of the academic research communities together to discuss the state of the art in the field of privacy-preserving machine learning through a series of talks and discussions over two days.

See event details

A Survey on Privacy from Statistical, Information and Estimation-Theoretic Views

The privacy risk has become an emerging challenge in both information theory and computer science due to the massive (centralized) collection of user data. In this paper, we overview privacy-preserving mechanisms and metrics from the lenses of information theory, and unify different privacy metrics, including f-divergences, Renyi divergences, and differential privacy, by the probability likelihood ratio (and the logarithm of it). We introduce…
See paper details