View publication

Computing the noisy sum of real-valued vectors is an important primitive in differentially private learning and statistics. In private federated learning applications, these vectors are held by client devices, leading to a distributed summation problem. Standard Secure Multiparty Computation (SMC) protocols for this problem are susceptible to poisoning attacks, where a client may have a large influence on the sum, without being detected. In this work, we propose a poisoning-robust private summation protocol in the multiple-server setting, recently studied in PRIO. We present a protocol for vector summation that verifies that the Euclidean norm of each contribution is approximately bounded. We show that by relaxing the security constraint in SMC to a differential privacy like guarantee, one can improve over PRIO in terms of communication requirements as well as the client-side computation. Unlike SMC algorithms that inevitably cast integers to elements of a large finite field, our algorithms work over integers/reals, which may allow for additional efficiencies.

Related readings and updates.

Non-parametric Differentially Private Confidence Intervals for the Median

This paper was accepted at the Theory and Practice of Differential Privacy workshop at the ICML 2021 conference. Differential privacy is a restriction on data processing algorithms that provides strong confidentiality guarantees for individual records in the data. However, research on proper statistical inference, that is, research on properly quantifying the uncertainty of the (noisy) sample estimate regarding the true value in the population…
See paper details

Learning with Privacy at Scale

Understanding how people use their devices often helps in improving the user experience. However, accessing the data that provides such insights — for example, what users type on their keyboards and the websites they visit — can compromise user privacy. We develop a system architecture that enables learning at scale by leveraging local differential privacy, combined with existing privacy best practices. We design efficient and scalable local differentially private algorithms and provide rigorous analyses to demonstrate the tradeoffs among utility, privacy, server computation, and device bandwidth. Understanding the balance among these factors leads us to a successful practical deployment using local differential privacy. This deployment scales to hundreds of millions of users across a variety of use cases, such as identifying popular emojis, popular health data types, and media playback preferences in Safari. We provide additional details about our system in the full version.

See article details