View publication

Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, we propose a novel Plan-then-Generate (PlanGen) framework to improve the controllability of neural data-to-text models. Extensive experiments and analyses are conducted on two benchmark datasets, ToTTo and WebNLG. The results show that our model is able to control both the intra-sentence and inter-sentence structure of the generated output. Furthermore, empirical comparisons against previous state-of-the-art methods show that our model improves the generation quality as well as the output diversity as judged by human and automatic evaluations.

Related readings and updates.

Enhancing Paragraph Generation with a Latent Language Diffusion Model

In the fast-evolving world of natural language processing (NLP), there is a strong demand for generating coherent and controlled text, as referenced in the work Toward Controlled Generation of Text. Traditional autoregressive models such as GPT, which have long been the industry standard, possess inherent limitations that sometimes manifest as repetitive and low-quality outputs, as seen in the work The Curious Case of Neural Text Degeneration. This is primarily due to a phenomenon known as "exposure bias," as seen in the work Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. This imperfection arises due to a mismatch between how these models are trained and their actual use during inference, often leading to error accumulation during text generation.

See highlight details

Structured Control Nets for Deep Reinforcement Learning

In recent years, Deep Reinforcement Learning has made impressive advances in solving several important benchmark problems for sequential decision making. Many control applications use a generic multilayer perceptron (MLP) for non-vision parts of the policy network. In this work, we propose a new neural network architecture for the policy network representation that is simple yet effective. The proposed Structured Control Net (SCN) splits the…
See paper details