Structured Control Nets for Deep Reinforcement Learning
In collaboration with Carnegie Mellon University
AuthorsMario Srouji, Jian Zhang, Ruslan Salakhutdinov
Structured Control Nets for Deep Reinforcement Learning
In collaboration with Carnegie Mellon University
AuthorsMario Srouji, Jian Zhang, Ruslan Salakhutdinov
In recent years, Deep Reinforcement Learning has made impressive advances in solving several important benchmark problems for sequential decision making. Many control applications use a generic multilayer perceptron (MLP) for non-vision parts of the policy network. In this work, we propose a new neural network architecture for the policy network representation that is simple yet effective. The proposed Structured Control Net (SCN) splits the generic MLP into two separate sub-modules: a nonlinear control module and a linear control module. Intuitively, the nonlinear control is for forward-looking and global control, while the linear control stabilizes the local dynamics around the residual of global control. We hypothesize that this will bring together the benefits of both linear and nonlinear policies: improve training sample efficiency, final episodic reward, and generalization of learned policy, while requiring a smaller network and being generally applicable to different training methods. We validated our hypothesis with competitive results on simulations from OpenAI MuJoCo, Roboschool, Atari, and a custom 2D urban driving environment, with various ablation and generalization tests, trained with multiple black-box and policy gradient training methods. The proposed architecture has the potential to improve upon broader control tasks by incorporating problem specific priors into the architecture. As a case study, we demonstrate much improved performance for locomotion tasks by emulating the biological central pattern generators (CPGs) as the nonlinear part of the architecture.
Policy Maps: Tools for Guiding the Unbounded Space of LLM Behaviors
November 3, 2025research area Data Science and Annotation, research area Human-Computer Interactionconference UIST
AI policy sets boundaries on acceptable behavior for AI models, but this is challenging in the context of large language models (LLMs): how do you ensure coverage over a vast behavior space? We introduce policy maps, an approach to AI policy design inspired by the practice of physical mapmaking. Instead of aiming for full coverage, policy maps aid effective navigation through intentional design choices about which aspects to capture and which to…
Recent advances in deep reinforcement learning have demonstrated the capability of learning complex control policies from many types of environments. When learning policies for safety-critical applications, it is essential to be sensitive to risks and avoid catastrophic events. Towards this goal, we propose an actor-critic framework that models the uncertainty of the future and simultaneously learns a policy based on that uncertainty model…