Download PDF

Many accessibility features available on mobile platforms require applications (apps) to provide complete and accurate metadata describing user interface (UI) components. Unfortunately, many apps do not provide sufficient metadata for accessibility features to work as expected. In this paper, we explore inferring accessibility metadata for mobile apps from their pixels, as the visual interfaces often best reflect an app's full functionality. We trained a robust, fast, memory-efficient, on-device model to detect UI elements using a dataset of 77,637 screens (from 4,068 iPhone apps) that we collected and annotated. To further improve UI detections and add semantic information, we introduced heuristics (e.g., UI grouping and ordering) and additional models (e.g., recognize UI content, state, interactivity). We built Screen Recognition to generate accessibility metadata to augment iOS VoiceOver. In a study with 9 screen reader users, we validated that our approach improves the accessibility of existing mobile apps, enabling even previously inaccessible apps to be used.

Related readings and updates.

Screen Parsing: Towards Reverse Engineering of UI Models from Screenshots

Automated understanding of user interfaces (UIs) from their pixels can improve accessibility, enable task automation, and facilitate interface design without relying on developers to comprehensively provide metadata. A first step is to infer what UI elements exist on a screen, but current approaches are limited in how they infer how those elements are semantically grouped into structured interface definitions. In this paper, we motivate the…
See paper details

Making Mobile Applications Accessible with Machine Learning

At Apple we use machine learning to teach our products to understand the world more as humans do. Of course, understanding the world better means building great assistive experiences. Machine learning can help our products be intelligent and intuitive enough to improve the day-to-day experiences of people living with disabilities. We can build machine-learned features that support a wide range of users including those who are blind or have low vision, those who are deaf or are hard of hearing, those with physical motor limitations, and also support those with cognitive disabilities.

See article details