View publication

We present a no-code Artificial Intelligence (AI) platform called Trinity with the main design goal of enabling both machine learning researchers and non-technical geospatial domain experts to experiment with domain-specific signals and datasets for solving a variety of complex problems on their own. This versatility to solve diverse problems is achieved by transforming complex Spatio-temporal datasets to make them consumable by standard deep learning models, in this case, Convolutional Neural Networks (CNNs), and giving the ability to formulate disparate problems in a standard way, eg. semantic segmentation. With an intuitive user interface, a feature store that hosts derivatives of complex feature engineering, a deep learning kernel, and a scalable data processing mechanism, Trinity provides a powerful platform for domain experts to share the stage with scientists and engineers in solving business-critical problems. It enables quick prototyping, rapid experimentation and reduces the time to production by standardizing model building and deployment. In this paper, we present our motivation behind Trinity and its design along with showcasing sample applications to motivate the idea of lowering the bar to using AI.

Related readings and updates.

Bridging the Domain Gap for Neural Models

Deep neural networks are a milestone technique in the advancement of modern machine perception systems. However, in spite of the exceptional learning capacity and improved generalizability, these neural models still suffer from poor transferability. This is the challenge of domain shift—a shift in the relationship between data collected across different domains (e.g., computer generated vs. captured by real cameras). Models trained on data collected in one domain generally have poor accuracy on other domains. In this article, we discuss a new domain adaptation process that takes advantage of task-specific decision boundaries and the Wasserstein metric to bridge the domain gap, allowing the effective transfer of knowledge from one domain to another. As an additional advantage, this process is completely unsupervised, i.e., there is no need for new domain data to have labels or annotations.

See article details

A New Benchmark and Progress Toward Improved Weakly Supervised Learning

Knowledge Matters: Importance of Prior Information for Optimization [7], by Gulcehre et. al., sought to establish the limits of current black-box, deep learning techniques by posing problems which are difficult to learn without engineering knowledge into the model or training procedure. In our work, we completely solve the previous Knowledge Matters problem using a generic model, pose a more difficult and scalable problem, All-Pairs, and advance…
See paper details