View publication

Recent methods have demonstrated that Large Language Models (LLMs) can solve reasoning tasks better when they are encouraged to solve subtasks of the main task first. In this paper we devise a similar strategy that breaks down reasoning tasks into a problem decomposition phase and a problem solving phase and show that the strategy is able to outperform a single stage solution. Further, we hypothesize that the decomposition should be easier to distill into a smaller model compared to the problem solving because the latter requires large amounts of domain knowledge while the former only requires learning general problem solving strategies. We propose methods to distill these two capabilities and evaluate their impact on reasoning outcomes and inference cost. We find that we can distill the problem decomposition phase and at the same time achieve good generalization across tasks, datasets, and models. However, it is harder to distill the problem solving capability without losing performance and the resulting distilled model struggles with generalization. These results indicate that by using smaller, distilled problem decomposition models in combination with problem solving LLMs we can achieve reasoning with cost-efficient inference and local adaptation.

Related readings and updates.

When Can Transformers Reason With Abstract Symbols?

We investigate the capabilities of transformer models on relational reasoning tasks. In these tasks, models are trained on a set of strings encoding abstract relations, and are then tested out-of-distribution on data that contains symbols that did not appear in the training dataset. We prove that for any relational reasoning task in a large family of tasks, transformers learn the abstract relations and generalize to the test set when trained by…
See paper details

A New Benchmark and Progress Toward Improved Weakly Supervised Learning

Knowledge Matters: Importance of Prior Information for Optimization [7], by Gulcehre et. al., sought to establish the limits of current black-box, deep learning techniques by posing problems which are difficult to learn without engineering knowledge into the model or training procedure. In our work, we completely solve the previous Knowledge Matters problem using a generic model, pose a more difficult and scalable problem, All-Pairs, and advance…
See paper details