View publication

In this work, we explore multiple architectures and training procedures for developing a multi-speaker and multi-lingual neural TTS system with the goals of a) improving the quality when the available data in the target language is limited and b) enabling cross-lingual synthesis. We report results from a large experiment using 30 speakers in 8 different languages across 15 different locales. The system is trained on the same amount of data per speaker. Compared to a single-speaker model, when the suggested system is fine tuned to a speaker, it produces significantly better quality in most of the cases while it only uses less than 40% of the speaker's data used to build the single-speaker model. In cross-lingual synthesis, on average, the generated quality is within 80% of native single-speaker models, in terms of Mean Opinion Score.

Related readings and updates.

Languages You Know Influence Those You Learn: Impact of Language Characteristics on Multi-Lingual Text-to-Text Transfer

Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer any linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather…
See paper details

Generating Multilingual Voices Using Speaker Space Translation Based on Bilingual Speaker Data

We present progress towards bilingual Text-to-Speech which is able to transform a monolingual voice to speak a second language while preserving speaker voice quality. We demonstrate that a bilingual speaker embedding space contains a separate distribution for each language and that a simple transform in speaker space generated by the speaker embedding can be used to control the degree of accent of a synthetic voice in a language. The same…
See paper details