View publication

In this work, we explore multiple architectures and training procedures for developing a multi-speaker and multi-lingual neural TTS system with the goals of a) improving the quality when the available data in the target language is limited and b) enabling cross-lingual synthesis. We report results from a large experiment using 30 speakers in 8 different languages across 15 different locales. The system is trained on the same amount of data per speaker. Compared to a single-speaker model, when the suggested system is fine tuned to a speaker, it produces significantly better quality in most of the cases while it only uses less than 40% of the speaker's data used to build the single-speaker model. In cross-lingual synthesis, on average, the generated quality is within 80% of native single-speaker models, in terms of Mean Opinion Score.

Related readings and updates.

Improving On-Device Speaker Verification Using Federated Learning With Privacy

Information on speaker characteristics can be useful as side information in improving speaker recognition accuracy. However, such information is often private. This paper investigates how privacy-preserving learning can improve a speaker verification system, by enabling the use of privacy-sensitive speaker data to train an auxiliary classification model that predicts vocal characteristics of speakers. In particular, this paper explores the…
See paper details

Generating Multilingual Voices Using Speaker Space Translation Based on Bilingual Speaker Data

We present progress towards bilingual Text-to-Speech which is able to transform a monolingual voice to speak a second language while preserving speaker voice quality. We demonstrate that a bilingual speaker embedding space contains a separate distribution for each language and that a simple transform in speaker space generated by the speaker embedding can be used to control the degree of accent of a synthetic voice in a language. The same…
See paper details