View publication

In this paper, we tackle the problem of handling narrowband and wideband speech by building a single acoustic model (AM), also called mixed bandwidth AM. In the proposed approach, an auxiliary input feature is used to provide the bandwidth information to the model, and bandwidth embeddings are jointly learned as part of acoustic model training. Experimental evaluations show that using bandwidth embeddings helps the model to handle the variability of the narrow and wideband speech, and makes it possible to train a mixed-bandwidth AM. Furthermore, we propose to use parallel convolutional layers to handle the mismatch between the narrow and wideband speech better, where separate convolution layers are used for each type of input speech signal. Our best system achieves 13% relative improvement on narrowband speech, while not degrading on wideband speech.

Related readings and updates.

Interspeech 2019

Apple attended Interspeech 2019, the world's largest conference on the science and technology of spoken language processing. The conference took place in Graz, Austria from September 15th to 19th. See accepted papers below.

Apple continues to build cutting-edge technology in the space of machine hearing, speech recognition, natural language processing, machine translation, text-to-speech, and artificial intelligence, improving the lives of millions of customers every day.

See event details

Improving Neural Network Acoustic Models by Cross-bandwidth and Cross-lingual Initialization

Users expect Siri speech recognition to work well regardless of language, device, acoustic environment, or communication channel bandwidth. Like many other supervised machine learning tasks, achieving such high accuracy usually requires large amounts of labeled data. Whenever we launch Siri in a new language, or extend support to different audio channel bandwidths, we face the challenge of having enough data to train our acoustic models. In this article, we discuss transfer learning techniques that leverage data from acoustic models already in production. We show that the representations are transferable not only across languages but also across audio channel bandwidths. As a case study, we focus on recognizing narrowband audio over 8 kHz Bluetooth headsets in new Siri languages. Our techniques help to improve significantly Siri’s accuracy on the day we introduce a new language.

See highlight details