View publication

This paper was accepted at the Machine Learning for Audio Workshop at NeurIPS 2023.

Over the past several years, the synchronization between audio and visual signals has been leveraged to learn richer audio-visual representations. Aided by the large availability of unlabeled videos, many unsupervised training frameworks have demonstrated impressive results in various downstream audio and video tasks. Recently, Masked Audio-Video Learners (MAViL) has emerged as a state-of-the-art audio-video pre-training framework. MAViL couples contrastive learning with masked autoencoding to jointly reconstruct audio spectrograms and video frames by fusing information from both modalities. In this paper, we study the potential synergy between diffusion models and MAViL, seeking to derive mutual benefits from these two frameworks. The incorporation of diffusion into MAViL, combined with various training efficiency methodologies that include the utilization of a masking ratio curriculum and adaptive batch sizing, results in a notable 32% reduction in pre-training Floating-Point Operations (FLOPS) and an 18% decrease in pre-training wall clock time. Crucially, this enhanced efficiency does not compromise the model's performance in downstream audio-classification tasks when compared to MAViL's performance.

Related readings and updates.

Matching Latent Encoding for Audio-Text based Keyword Spotting

Using audio and text embeddings jointly for Keyword Spotting (KWS) has shown high-quality results, but the key challenge of how to semantically align two embeddings for multi-word keywords of different sequence lengths remains largely unsolved. In this paper, we propose an audio-text-based end-to-end model architecture for flexible keyword spotting (KWS), which builds upon learned audio and text embeddings. Our architecture uses a novel…
See paper details

Rescribe: Authoring and Automatically Editing Audio Descriptions

Audio descriptions make videos accessible to those who cannot see them by describing visual content in audio. Producing audio descriptions is challenging due to the synchronous nature of the audio description that must fit into gaps of other video content. An experienced audio description author will produce content that fits narration necessary to understand, enjoy, or experience the video content into the time available. This can be especially…
See paper details