View publication

Modern wearable devices are embedded with a range of noninvasive biomarker sensors that hold promise for improving detection and treatment of disease. One such sensor is the single-lead electrocardiogram (ECG) which measures electrical signals in the heart. The benefits of the sheer volume of ECG measurements with rich longitudinal structure made possible by wearables come at the price of potentially noisier measurements compared to clinical ECGs, e.g., due to movement. In this work, we develop a statistical model to simulate a structured noise process in ECGs derived from a wearable sensor, design a beat-to-beat representation that is conducive for analyzing variation, and devise a factor analysis-based method to denoise the ECG. We study synthetic data generated using a realistic ECG simulator and a structured noise model. At varying levels of signal-to-noise, we quantitatively measure an upper bound on performance and compare estimates from linear and non-linear models. Finally, we apply our method to a set of ECGs collected by wearables in a mobile health study.

Related readings and updates.

Apple at NeurIPS 2020

Apple sponsored the Neural Information Processing Systems (NeurIPS) conference, which was held virtually from December 6 to 12. NeurIPS is a global conference focused on fostering the exchange of research on neural information processing systems in their biological, technological, mathematical, and theoretical aspects.

See event details

Optimizing Siri on HomePod in Far‑Field Settings

The typical audio environment for HomePod has many challenges — echo, reverberation, and noise. Unlike Siri on iPhone, which operates close to the user’s mouth, Siri on HomePod must work well in a far-field setting. Users want to invoke Siri from many locations, like the couch or the kitchen, without regard to where HomePod sits. A complete online system, which addresses all of the environmental issues that HomePod can experience, requires a tight integration of various multichannel signal processing technologies. Accordingly, the Audio Software Engineering and Siri Speech teams built a system that integrates both supervised deep learning models and unsupervised online learning algorithms and that leverages multiple microphone signals. The system selects the optimal audio stream for the speech recognizer by using top-down knowledge from the “Hey Siri” trigger phrase detectors. In this article, we discuss the machine learning techniques we use for online signal processing, as well as the challenges we faced and our solutions for achieving environmental and algorithmic robustness while ensuring energy efficiency.

See article details