View publication

Modern wearable devices can conveniently record various biosignals in the many different environments of daily living, enabling a rich view of individual health. However, not all biosignals are the same: high-fidelity biosignals, such as photoplethysmogram (PPG), contain more physiological information, but require optical sensors with a high power footprint. Alternatively, a lower-fidelity biosignal such as accelerometry has a significantly smaller power footprint and is available in almost any wearable device. While accelerometry is widely used for activity recognition and fitness, it is less explored for health biomarkers and diagnosis. Here, we show that an accelerometry foundation model can predict a wide variety of health targets. To achieve improved performance, we distill representational knowledge from PPG encoders to accelerometery encoders using 20 million minutes of unlabeled data, collected from ~172K participants in the Apple Heart and Movement Study under informed consent. We observe strong cross-modal alignment on unseen data, e.g., 99.2% top-1 accuracy for retrieving PPG embeddings from accelerometry embeddings. We show that distilled accelerometry encoders have significantly more informative representations compared to self-supervised or supervised encoders trained directly on accelerometry data, observed by at least 23%-49% improved performance for predicting heart rate and heart rate variability. We also show that distilled accelerometry encoders are readily predictive of a wide array of downstream health targets, i.e., they are generalist foundation models. We believe accelerometry foundation models for health may unlock new opportunities for developing digital biomarkers from any wearable device.

Related readings and updates.

Personalizing Health and Fitness with Hybrid Modeling

Recent research has explored clinical monitoring, cardiovascular events, and even clinical lab values from wearables data. As adoption increases, wearables data may become crucial in public health applications like disease monitoring and the design of epidemiological studies.

See highlight details

Large-scale Training of Foundation Models for Wearable Biosignals

Tracking biosignals is crucial for monitoring wellness and preempting the development of severe medical conditions. Today, wearable devices can conveniently record various biosignals, creating the opportunity to monitor health status without disruption to one's daily routine. Despite the widespread use of wearable devices and existing digital biomarkers, the absence of curated data with annotated medical labels hinders the development of new…
See paper details