View publication

We present a neural text-to-speech (TTS) method that models natural vocal effort variation to improve the intelligibility of synthetic speech in the presence of noise. The method consists of first measuring the spectral tilt of unlabeled conventional speech data, and then conditioning a neural TTS model with normalized spectral tilt among other prosodic factors. Changing the spectral tilt parameter and keeping other prosodic factors unchanged enables effective vocal effort control at synthesis time independent of other prosodic factors. By extrapolation of the spectral tilt values beyond what has been seen in the original data, we can generate speech with high vocal effort levels, thus improving the intelligibility of speech in the presence of masking noise. We evaluate the intelligibility and quality of normal speech and speech with increased vocal effort in the presence of various masking noise conditions, and compare these to well-known speech intelligibility-enhancing algorithms. The evaluations show that the proposed method can improve the intelligibility of synthetic speech with little loss in speech quality.

Related readings and updates.

Hierarchical Prosody Modeling and Control in Non-Autoregressive Parallel Neural TTS

Neural text-to-speech (TTS) synthesis can generate speech that is indistinguishable from natural speech. However, the synthetic speech often represents the average prosodic style of the database instead of having more versatile prosodic variation. Moreover, many models lack the ability to control the output prosody, which does not allow for different styles for the same text input. In this work, we train a non-autoregressive parallel neural TTS…
See paper details

Controllable Neural Text-To-Speech Synthesis Using Intuitive Prosodic Features

Modern neural text-to-speech (TTS) synthesis can generate speech that is indistinguishable from natural speech. However, the prosody of generated utterances often represents the average prosodic style of the database instead of having wide prosodic variation. Moreover, the generated prosody is solely defined by the input text, which does not allow for different styles for the same sentence. In this work, we train a sequence-to-sequence neural…
See paper details