Contrastive learning has emerged as a transformative method for learning effective visual representations through the alignment of image and text embeddings. However, pairwise similarity computation in contrastive loss between image and text pairs poses computational challenges. This paper presents a novel weakly supervised pre-training of vision models on web-scale image-text data. The proposed method reframes pre-training on image-text data as a classification task. Consequently, it eliminates the need for pairwise similarity computations in contrastive loss, achieving a remarkable 2.7 times acceleration in training speed compared to contrastive learning on web-scale data. Through extensive experiments spanning diverse vision tasks, including detection and segmentation, we demonstrate that the proposed method maintains high representation quality.

Related readings and updates.

Contrastive Localized Language-Image Pre-Training

Contrastive Language-Image Pre-training (CLIP) has been a celebrated method for training vision encoders to generate image/text representations facilitating various applications. Recently, CLIP has been widely adopted as the vision backbone of multimodal large language models (MLLMs) to connect image inputs for language interactions. The success of CLIP as a vision-language foundation model relies on aligning web-crawled noisy text annotations at…
See paper details

MOFI: Learning Image Representation from Noisy Entity Annotated Images

In this paper, we introduce a novel approach to automatically assign entity labels to images from existing noisy image-text pairs. The approach employees a named entity recognition model to extract entities from text, and uses a CLIP model to select the right entities as the labels of the paired image. The approach is simple, and can be readily scaled up to billions of image-text pairs mined from the web, through which we have successfully…
See paper details