View publication

Image classification with deep neural networks is typically restricted to images of small dimensionality such as R224 x 244 in Resnet models [24]. This limitation excludes the R4000 x 3000 dimensional images that are taken by modern smartphone cameras and smart devices. In this work, we aim to mitigate the prohibitive inferential and memory costs of operating in such large dimensional spaces. To sample from the high-resolution original input distribution, we propose using a smaller proxy distribution to learn the co-ordinates that correspond to regions of interest in the high-dimensional space. We introduce a new principled variational lower bound that captures the relationship of the proxy distribution's posterior and the original image's co-ordinate space in a way that maximizes the conditional classification likelihood. We empirically demonstrate on one synthetic benchmark and one real world large resolution DSLR camera image dataset that our method produces comparable results with ~10x faster inference and lower memory consumption than a model that utilizes the entire original input distribution. Finally, we experiment with a more complex setting using mini-maps from Starcraft II [56] to infer the number of characters in a complex 3d-rendered scene. Even in such complicated scenes our model provides strong localization: a feature missing from traditional classification models.

Related readings and updates.

Cinematic L1 Video Stabilization with a Log-Homography Model

We present a method for stabilizing handheld video that simulates the camera motions cinematographers achieve with equipment like tripods, dollies, and Steadicams. We formulate a constrained convex optimization problem minimizing the ℓ1-norm of the first three derivatives of the stabilized motion. Our approach extends the work of Grundmann et al. [9] by solving with full homographies (rather than affinities) in order to correct perspective…
See paper details

Improving the Realism of Synthetic Images

Most successful examples of neural nets today are trained with supervision. However, to achieve high accuracy, the training sets need to be large, diverse, and accurately annotated, which is costly. An alternative to labelling huge amounts of data is to use synthetic images from a simulator. This is cheap as there is no labeling cost, but the synthetic images may not be realistic enough, resulting in poor generalization on real test images. To help close this performance gap, we've developed a method for refining synthetic images to make them look more realistic. We show that training models on these refined images leads to significant improvements in accuracy on various machine learning tasks.

See article details