View publication

We study Variational Rectified Flow Matching, a framework that enhances classic rectified flow matching by modeling multi-modal velocity vector-fields. At inference time, classic rectified flow matching ‘moves’ samples from a source distribution to the target distribution by solving an ordinary differential equation via integration along a velocity vector-field. At training time, the velocity vector-field is learnt by linearly interpolating between coupled samples one drawn from the source and one drawn from the target distribution randomly. This leads to ”ground-truth” velocity vector-fields that point in different directions at the same location, i.e., the velocity vector-fields are multi-modal/ambiguous. However, since training uses a standard mean-squared-error loss, the learnt velocity vector-field averages ”ground-truth” directions and isn’t multi-modal. In contrast, variational rectified flow matching learns and samples from multi-modal flow directions. We show on synthetic data, MNIST, CIFAR-10, and ImageNet that variational rectified flow matching leads to compelling results.

Related readings and updates.

Diffusion models achieve high-quality image generation but are limited by slow iterative sampling. Distillation methods alleviate this by enabling one- or few-step generation. Flow matching, originally introduced as a distinct framework, has since been shown to be theoretically equivalent to diffusion under Gaussian assumptions, raising the question of whether distillation techniques such as score distillation transfer directly. We provide a…

Read more

Conditional generative modeling aims to learn a conditional data distribution from samples containing data-condition pairs. For this, diffusion and flow-based methods have attained compelling results. These methods use a learned (flow) model to transport an initial standard Gaussian noise that ignores the condition to the conditional data distribution. The model is hence required to learn both mass transport and conditional injection. To ease the…

Read more