View publication

Large language models (LLMs) struggle to consistently generate UI code that compiles and produces visually relevant designs. Existing approaches to improve generation rely on expensive human feedback or distilling a proprietary model. In this paper, we explore the use of automated feedback (compilers and multi-modal models) to guide LLMs to generate high-quality UI code. Our method starts with an existing LLM and iteratively produces improved models by self-generating a large synthetic dataset using an original model, applying automated tools to aggressively filter, score, and de-duplicate the data into a refined higher quality dataset. The original LLM is improved by finetuning on this refined dataset. We applied our approach to several open-source LLMs and compared the resulting performance to baseline models with both automated metrics and human preferences. Our evaluation shows the resulting models outperform all other downloadable baselines and approach the performance of larger proprietary models.

Related readings and updates.

Despite being trained on vast amounts of data, most LLMs are unable to reliably generate well-designed UIs. Designer feedback is essential to improving performance on UI generation; however, we find that existing RLHF methods based on ratings or rankings are not well-aligned with designers’ workflows and ignore the rich rationale used to critique and improve UI designs. In this paper, we investigate several approaches for designers to give…

Read more

This paper was accepted at IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) 2024.

Programmers frequently engage with machine learning tutorials in computational notebooks and have been adopting code generation technologies based on large language models (LLMs). However, they encounter difficulties in understanding and working with code produced by LLMs. To mitigate these challenges, we introduce a novel workflow into…

Read more