View publication

Maximum mutual information (MMI) has become one of the two de facto methods for sequence-level training of speech recognition acoustic models. This paper aims to isolate, identify and bring forward the implicit modelling decisions induced by the design implementation of standard finite state transducer (FST) lattice based MMI training framework. The paper particularly investigates the necessity to maintain a preselected numerator alignment and raises the importance of determinizing FST denominator lattices on the fly. The efficacy of employing on the fly FST lattice determinization is mathematically shown to guarantee discrimination at the hypothesis level and is empirically shown through training deep CNN models on a 18K hours Mandarin dataset and on a 2.8K hours English dataset. On assistant and dictation tasks, the approach achieves between 2.3-4.6% relative WER reduction (WERR) over the standard FST lattice based approach.

Related readings and updates.

Lattice-based Improvements for Voice Triggering Using Graph Neural Networks

Voice-triggered smart assistants often rely on detection of a trigger-phrase before they start listening for the user request. Mitigation of false triggers is an important aspect of building a privacy-centric non-intrusive smart assistant. In this paper, we address the task of false trigger mitigation (FTM) using a novel approach based on analyzing automatic speech recognition (ASR) lattices using graph neural networks (GNN). The proposed…
See paper details

Voice Trigger Detection from LVCSR Hypothesis Lattices Using Bidirectional Lattice Recurrent Neural Networks

We propose a method to reduce false voice triggers of a speech-enabled personal assistant by post-processing the hypothesis lattice of a server-side large-vocabulary continuous speech recognizer (LVCSR) via a neural network. We first discuss how an estimate of the posterior probability of the trigger phrase can be obtained from the hypothesis lattice using known techniques to perform detection, then investigate a statistical model that processes…
See paper details