View publication

Deep Neural Network--Hidden Markov Model (DNN-HMM) based methods have been successfully used for many always-on keyword spotting algorithms that detect a wake word to trigger a device. The DNN predicts the state probabilities of a given speech frame, while HMM decoder combines the DNN predictions of multiple speech frames to compute the keyword detection score. The DNN, in prior methods, is trained independent of the HMM parameters to minimize the cross-entropy loss between the predicted and the ground-truth state probabilities. The mis-match between the DNN training loss (cross-entropy) and the end metric (detection score) is the main source of sub-optimal performance for the keyword spotting task. We address this loss-metric mismatch with a novel end-to-end training strategy that learns the DNN parameters by optimizing for the detection score. To this end, we make the HMM decoder (dynamic programming) differentiable and back-propagate through it to maximize the score for the keyword and minimize the scores for non-keyword speech segments. Our method does not require any change in the model architecture or the inference framework; therefore, there is no overhead in run-time memory or compute requirements. Moreover, we show significant reduction in false rejection rate (FRR) at the same false trigger experience (> 70% over independent DNN training).

Related readings and updates.

Voice Trigger System for Siri

A growing number of consumer devices, including smart speakers, headphones, and watches, use speech as the primary means of user input. As a result, voice trigger detection systems—a mechanism that uses voice recognition technology to control access to a particular device or feature—have become an important component of the user interaction pipeline as they signal the start of an interaction between the user and a device. Since these systems are deployed entirely on-device, several considerations inform their design, like privacy, latency, accuracy, and power consumption.

See highlight details

HEiMDaL: Highly Efficient Method for Detection and Localization of wake-words

Streaming keyword spotting is a widely used solution for activating voice assistants. Deep Neural Networks with Hidden Markov Model (DNN-HMM) based methods have proven to be efficient and widely adopted in this space, primarily because of the ability to detect and identify the start and end of the wake-up word at low compute cost. However, such hybrid systems suffer from loss metric mismatch when the DNN and HMM are trained independently…
See paper details