This paper was accepted at the EMNLP Workshop on Computational Approaches to Linguistic Code-Switching (CALCS).

Code-switching (CS), i.e. mixing different languages in a single sentence, is a common phenomenon in communication and can be challenging in many Natural Language Processing (NLP) settings. Previous studies on CS speech have shown promising results for end-to-end speech translation (ST), but have been limited to offline scenarios and to translation to one of the languages present in the source (monolingual transcription).

In this paper, we focus on two essential yet unexplored areas for real-world CS speech translation: streaming settings, and translation to a third language (i.e., a language not included in the source). To this end, we extend the Fisher and Miami test and validation datasets to include new targets in Spanish and German. Using this data, we train a model for both offline and streaming ST and we establish baseline results for the two settings mentioned earlier.

Related readings and updates.

End-to-End Speech Translation for Code Switched Speech

Code switching (CS) refers to the phenomenon of interchangeably using words and phrases from different languages. CS can pose significant accuracy challenges to NLP, due to the often monolingual nature of the underlying systems. In this work, we focus on CS in the context of English/Spanish conversations for the task of speech translation (ST), generating and evaluating both transcript and translation. To evaluate model performance on this task…
See paper details

Exploring Retraining-free Speech Recognition for Intra-sentential Code-switching

Code Switching refers to the phenomenon of changing languages within a sentence or discourse, and it represents a challenge for conventional automatic speech recognition systems deployed to tackle a single target language. The code switching problem is complicated by the lack of multi-lingual training data needed to build new and ad hoc multi-lingual acoustic and language models. In this work, we present a prototype research code-switching speech…
See paper details