Which Evaluation for Which Model? A Taxonomy for Speech Model Assessment
AuthorsMaureen de Seyssel, Eeshan Gunesh Dhekane
Which Evaluation for Which Model? A Taxonomy for Speech Model Assessment
AuthorsMaureen de Seyssel, Eeshan Gunesh Dhekane
Speech foundation models have recently achieved remarkable capabilities across a wide range of tasks. However, their evaluation remains disjointed across tasks and model types. Different models excel at distinct aspects of speech processing and thus require different evaluation protocols. This paper proposes a unified taxonomy that addresses the question: Which evaluation is appropriate for which model? The taxonomy defines three orthogonal axes: the evaluation aspect being measured, the model capabilities required to attempt the task, and the task or protocol requirements needed to perform it. We classify a broad set of existing evaluations and benchmarks along these axes, spanning areas such as representation learning, speech generation, and interactive dialogue. By mapping each evaluation to the capabilities a model exposes (e.g., speech generation, real-time processing) and to its methodological demands (e.g., fine-tuning data, human judgment), the taxonomy provides a principled framework for aligning models with suitable evaluation methods. It also reveals systematic gaps, such as limited coverage of prosody, interaction, or reasoning, that highlight priorities for future benchmark design. Overall, this work offers a conceptual foundation and practical guide for selecting, interpreting, and extending evaluations of speech models.
Fundamental Challenges in Evaluating Text2SQL Solutions and Detecting Their Limitations
March 24, 2025research area Knowledge Bases and Search, research area Speech and Natural Language Processing
In this work, we dive into the fundamental challenges of evaluating Text2SQL solutions and highlight potential failure causes and the potential risks of relying on aggregate metrics in existing benchmarks. We identify two largely unaddressed limitations in current open benchmarks: (1) data quality issues in the evaluation data mainly attributed to the lack of capturing the probabilistic nature of translating a natural language description into a…
At the 2024 Worldwide Developers Conference, we introduced Apple Intelligence, a personal intelligence system integrated deeply into iOS 18, iPadOS 18, and macOS Sequoia.
Apple Intelligence is comprised of multiple highly-capable generative models that are specialized for our users’ everyday tasks, and can adapt on the fly for their current activity. The foundation models built into Apple Intelligence have been fine-tuned for user experiences such as writing and refining text, prioritizing and summarizing notifications, creating playful images for conversations with family and friends, and taking in-app actions to simplify interactions across apps.