View publication

We introduce TASER (Translation Assessment via Systematic Evaluation and Reasoning), a metric that uses Large Reasoning Models (LRMs) for automated translation quality assessment. TASER harnesses the explicit reasoning capabilities of LRMs to conduct systematic, step-by-step evaluation of translation quality. We evaluate TASER on the WMT24 Metrics Shared Task across both reference-based and reference-free scenarios, demonstrating state-of-the-art performance. In system-level evaluation, TASER achieves the highest soft pairwise accuracy in both reference-based and reference-free settings, outperforming all existing metrics. At the segment level, TASER maintains competitive performance with our reference-free variant ranking as the top-performing metric among all reference-free approaches. Our experiments reveal that structured prompting templates yield superior results with LRMs compared to the open-ended approaches that proved optimal for traditional LLMs. We evaluate o3, a large reasoning model from OpenAI, with varying reasoning efforts, providing insights into the relationship between reasoning depth and evaluation quality. The explicit reasoning process in LRMs offers interpretability and visibility, addressing a key limitation of existing automated metrics. Our results demonstrate that Large Reasoning Models show a measurable advancement in translation quality assessment, combining improved accuracy with transparent evaluation across diverse language pairs.

Related readings and updates.

Recent generations of frontier language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers. While these models demonstrate improved performance on reasoning benchmarks, their fundamental capabilities, scaling properties, and limitations remain insufficiently understood. Current evaluations primarily focus on established mathematical and coding benchmarks, emphasizing final…

Read more

Long chain-of-thought (CoT) significantly enhances large language models’ (LLM) reasoning capabilities. However, the extensive reasoning traces lead to inefficiencies and an increased time-to-first-token (TTFT). We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions. We observe that models inherently possess the ability to perform interleaved…

Read more