View publication

This paper was accepted at the "Human in the Loop Learning Workshop" at NeurIPS 2022.

Specification of reward functions for Reinforcement Learning is a challenging task which is bypassed by the framework of Preference Based Learning methods which instead learn from preference labels on trajectory queries. These methods, however, still suffer from high requirements of preference labels and often would still achieve low reward recovery. We present the PRIOR framework that alleviates the issues of impractical number of queries to humans as well as poor reward recovery through computing priors about the reward function based on the environment dynamics and a surrogate preference classification model. We find that imposing these priors as soft constraints significantly reduces the queries made to the human in the loop and improves the overall reward recovery. Additionally, we investigate the use of an abstract state space for the computation of these priors to further improve the agent's performance.

Related readings and updates.

On the Limited Generalization Capability of the Implicit Reward Model Induced by Direct Preference Optimization

Reinforcement Learning from Human Feedback (RLHF) is an effective approach for aligning language models to human preferences. Central to RLHF is learning a reward function for scoring human preferences. Two main approaches for learning a reward model are 1) training an explicit reward model as in RLHF, and 2) using an implicit reward learned from preference data through methods such as Direct Preference Optimization (DPO). Prior work has shown…
See paper details

Rewards Encoding Environment Dynamics Improves Preference-based Reinforcement Learning

This paper was accepted at the workshop at "Human-in-the-Loop Learning Workshop" at NeurIPS 2022. Preference-based reinforcement learning (RL) algorithms help avoid the pitfalls of hand-crafted reward functions by distilling them from human preference feedback, but they remain impractical due to the burdensome number of labels required from the human, even for relatively simple tasks. In this work, we demonstrate that encoding environment…
See paper details