View publication

*=Equal Contribution

While state-of-the-art contrastive Self-Supervised Learning (SSL) models produce results competitive with their supervised counterparts, they lack the ability to infer latent variables. In contrast, prescribed latent variable (LV) models enable attributing uncertainty, inducing task specific compression, and in general allow for more interpretable representations. In this work, we introduce LV approximations to large scale contrastive SSL models. We demonstrate that this addition improves downstream performance (resulting in 96.42% and 77.49% test top-1 fine-tuned performance on CIFAR10 and ImageNet respectively with a ResNet50) as well as producing highly compressed representations (588x reduction) that are useful for interpretability, classification and regression downstream tasks.

Related readings and updates.

Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments

*Equal Contributors To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models while maintaining their high-quality output. A critical aspect of compression in practice is model comparison, including tracking many compression experiments, identifying subtle changes in model behavior, and negotiating complex accuracy-efficiency trade-offs. However, existing compression tools poorly support…
See paper details

Variational Neural Machine Translation with Normalizing Flows

Variational Neural Machine Translation (VNMT) is an attractive framework for modeling the generation of target translations, conditioned not only on the source sentence but also on some latent random variables. The latent variable modeling may introduce useful statistical dependencies that can improve translation accuracy. Unfortunately, learning informative latent variables is non-trivial, as the latent space can be prohibitively large, and the…
See paper details