View publication

*Equal Contributors

In the context of a voice assistant system, steering refers to the phenomenon in which a user issues a follow-up command attempting to direct or clarify a previous turn. We propose STEER, a steering detection model that predicts whether a follow-up turn is a user's attempt to steer the previous command. Constructing a training dataset for steering use cases poses challenges due to the cold-start problem. To overcome this, we developed heuristic rules to sample opt-in usage data, approximating positive and negative samples without any annotation. Our experimental results show promising performance in identifying steering intent, with over 95% accuracy on our sampled data. Moreover, STEER, in conjunction with our sampling strategy, aligns effectively with real-world steering scenarios, as evidenced by its strong zero-shot performance on a human-graded evaluation set. In addition to relying solely on user transcripts as input, we introduce STEER+, an enhanced version of the model. STEER+ utilizes a semantic parse tree to provide more context on out-of-vocabulary words, such as named entities that often occur at the sentence boundary. This further improves model performance, reducing error rate in domains where entities frequently appear, such as messaging. Lastly, we present a data analysis that highlights the improvement in user experience when voice assistants support steering use cases.

Related readings and updates.

5IDER: Unified Query Rewriting for Steering, Intent Carryover, Disfluencies, Entity Carryover and Repair

*=Equal Contributors Providing voice assistants the ability to navigate multi-turn conversations is a challenging problem. Handling multi-turn interactions requires the system to understand various conversational use-cases, such as steering, intent carryover, disfluencies, entity carryover, and repair. The complexity of this problem is compounded by the fact that these use-cases mix with each other, often appearing simultaneously in natural…
See paper details

Learning to Rank Intents in Voice Assistants

Voice assistants aim to fulfill user requests by choosing the best intent from multiple options generated by its Automated Speech Recognition and Natural Language Understanding sub-systems. However, voice assistants do not always produce the expected results. This can happen because voice assistants choose from ambiguous intents. User-specific or domain-specific contextual information can reduce the ambiguity of the user request. Additionally…
See paper details