View publication

We propose a stacked 1D convolutional neural network (S1DCNN) for end-to-end small footprint voice trigger detection in a streaming scenario. Voice trigger detection is an important speech application, with which users can activate their devices by simply saying a keyword or phrase. Due to privacy and latency reasons, a voice trigger detection system should run on an always-on processor on device. Therefore, having small memory and compute cost is crucial for a voice trigger detection system. Recently, singular value decomposition filters (SVDFs) has been used for end-to-end voice trigger detection. The SVDFs approximate a fully-connected layer with a low rank approximation, which reduces the number of model parameters. In this work, we propose S1DCNN as an alternative approach for end-to-end small-footprint voice trigger detection. An S1DCNN layer consists of a 1D convolution layer followed by a depth-wise 1D convolution layer. We show that the SVDF can be expressed as a special case of the S1DCNN layer. Experimental results show that the S1DCNN achieve 19.0% relative false reject ratio (FRR) reduction with a similar model size and a similar time delay compared to the SVDF. By using longer time delays, the S1DCNN further improve the FRR up to 12.2 percent relative.

Related readings and updates.

Improving Voice Trigger Detection with Metric Learning

Voice trigger detection is an important task, which enables activating a voice assistant when a target user speaks a keyword phrase. A detector is typically trained on speech data independent of speaker information and used for the voice trigger detection task. However, such a speaker independent voice trigger detector typically suffers from performance degradation on speech from underrepresented groups, such as accented speakers. In this work…
See paper details

Interspeech 2020

Apple sponsored the thirty-second Interspeech conference, which was held virtually from October 25 to 29. Interspeech is a global conference focused on cognitive intelligence for speech processing and application.

See event details