View publication

In this paper, we present a fast and reliable method based on PCA to select the number of dimensions for word embeddings. First, we train one embedding with a generous upper bound (e.g. 1,000) of dimensions. Then we transform the embeddings using PCA and incrementally remove the lesser dimensions one at a time while recording the embeddings' performance on language tasks. Lastly, we select the number of dimensions while balancing model size and accuracy. Experiments using various datasets and language tasks demonstrate that we are able to train 10 times fewer sets of embeddings while retaining optimal performance. Researchers interested in training the best-performing embeddings for downstream tasks, such as sentiment analysis, question answering and hypernym extraction, as well as those interested in embedding compression should find the method helpful.

Related readings and updates.

Learning Compressed Embeddings for On-Device Inference

In deep learning, embeddings are widely used to represent categorical entities such as words, apps, and movies. An embedding layer maps each entity to a unique vector, causing the layer’s memory requirement to be proportional to the number of entities. In the recommendation domain, a given category can have hundreds of thousands of entities, and its embedding layer can take gigabytes of memory. The scale of these networks makes them difficult to…
See paper details

Can Global Semantic Context Improve Neural Language Models?

Entering text on your iPhone, discovering news articles you might enjoy, finding out answers to questions you may have, and many other language-related tasks depend upon robust natural language processing (NLP) models. Word embeddings are a category of NLP models that mathematically map words to numerical vectors. This capability makes it fairly straightforward to find numerically similar vectors or vector clusters, then reverse the mapping to get relevant linguistic information. Such models are at the heart of familiar apps like News, search, Siri, keyboards, and Maps. In this article, we explore whether we can improve word predictions for the QuickType keyboard using global semantic context.

See article details